Sampling in Forest Inventories

In sampling, a part of a population is selected and used to obtain estimates of characteristics of that population. The current chapter gives an overview on sampling methods applied in the scope of forest inventories, describes their general approaches and estimation procedures, and discusses advantages and disadvantages of the individual designs. Fixed area plots and point sampling for the selection of trees on sampling units are presented. Alternative designs for the estimation of change by sampling on successive occasions are introduced. The final section gives an overview of sampling and non-sampling errors occurring in forests surveys.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 1,799.99 Price includes VAT (France)
Hardcover Book EUR 3,164.99 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

Sampling in Forest Inventories
Chapter © 2015

Chapter © 2019

Italy
Chapter © 2016
Notes
A synonym for sampling units is the term sampling elements (or simply elements).
n! = n(n − 1)(n − 2)…(1) and 0! = 1.
The term “sampling error” is sometimes used as a synonym for standard error.
References
- Agresti A (1992) A survey of exact inference for contingency tables. Stat Sci 7:131–177 ArticleGoogle Scholar
- Alder D, Synnott TJ (1992) In: Institute OF (ed) Permanent sample plot techniques for mixed tropical forests, Tropical forestry papers. Oxford Forestry Institute, Oxford, p 124 Google Scholar
- Baker PJ, Wilson JS (2000) A quantitative technique for the identification of canopy stratification in tropical and temperate forests. For Ecol Manage 127:77–86 ArticleGoogle Scholar
- Banyard SG (1987) Point sampling using constant tallies is biased: a tropical rainforest case study. Commonw For Rev 66:161–163 Google Scholar
- Barabesi L, Franceschi S (2011) Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics 22:271–276 ArticleGoogle Scholar
- Barnett DT, Stohlgren TJ (2003) A nested-intensity design for surveying plant diversity. Biodivers Conserv 12:255–278 ArticleGoogle Scholar
- Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program-national sampling design and estimation procedures. USDA Forest Service, Southern Research Station, Asheville Google Scholar
- Bellhouse DR (1985) Computing methods for variance estimation in complex surveys. J Off Stat 1:323–329 Google Scholar
- Bellhouse DR (1988) Systematic sampling. In: Krishnaiah PR, Rao CR (eds) Sampling. Elsevier, Amsterdam, pp 125–145 Google Scholar
- Bickford CA, Mayer CF, Ware KD (1963) An efficient sampling design for forest inventory: the northeastern forest survey. J For 61:826–833 Google Scholar
- Biolley HE (1921) L’aménagement des forêts par la méthode expérimentale et spécialment la méthode du contrôle. Neuchatel, Paris Google Scholar
- Bitterlich W (1947) Die Winkelzählmessung. Allgemeine Forst- und Holzwirtschaftliche Zeitung 58:94–96 Google Scholar
- Boon DR (1970) A critical review of timber survey methods in tropical rainforest. International Institute for Aerial Survey and Earth Sciences, Delft, p 35 Google Scholar
- Bowden DC, Dixon GE, Frayer WE, Graybill FA, Jeyaratnam S, Johnston DC, Kent BM, LaBau VJ, Roberts E (1979) Multi-level sampling designs for resource inventories. Colorado State University, Ft. Collins Google Scholar
- Breidenbach J, Antón-Fernández C, Petersson H, McRoberts RE, Astrup R (2014) Quantifying the model-related variability of biomass stock and change estimates in the Norwegian national forest inventory. For Sci 60:25–33 Google Scholar
- Brewer KRW, Hanif M (1983) Sampling with unequal probability. In: Brillinger D, Fienberg SE, Gani J, Hartigan JA, Krickeberg K (eds) Lecture notes in statistics. Springer, Berlin/Heidelberg/New York, pp 1–164 Google Scholar
- Casella G, Berger RL (2008) Statistical inference. Cengage Lerning Emea, Andover Google Scholar
- Chambers RL, Clark RG (2012) An introduction to model-based survey sampling with applications. Oxford University Press, New York BookGoogle Scholar
- Chen D (1998) Measurement errors in line transect surveys. Biometrics 54:899–908 ArticleGoogle Scholar
- Chen D, Cowling A (2001) Measurement errors in line transect surveys where detectability varies with distance and size. Biometrics 57:732–742 ArticleCASPubMedGoogle Scholar
- Chilés J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, Hoboken BookGoogle Scholar
- Cochran WG (1977) Sampling techniques. Wiley, New York Google Scholar
- Correll RL, Cellier KM (1987) Effects of plot size, block size and buffer rows on the precision of forestry trials. Aust For Res 17:11–18 Google Scholar
- Da Silva JA (1982) Aplicacao do reloscopio de banda larga em inventarios de florestas tropicais. Silvic Sao Paulo 16A:601–603 Google Scholar
- Dalenius T, Gurney M (1951) The problem of optimal stratification Skand Akt 34:133–148 Google Scholar
- Diggle PJ, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York Google Scholar
- Domke GM, Woodall CW, Smith JE, Westfall JA, McRoberts RE (2012) Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates. For Ecol Manage 270:108–116 ArticleGoogle Scholar
- Ducey MJ (2009) Sampling trees with probability nearly proportional to biomass. For Ecol Manage 258:2110–2116 ArticleGoogle Scholar
- FAO (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations. FAO, Rome Google Scholar
- Fiuller WA (2006) Measurement error models. Wiley, New York Google Scholar
- Flewelling JW, Thomas CE (1984) An improved estimator for merchantable basal area growth based on point samples. For Sci 30:813–821 Google Scholar
- Fuller WA (2009) Sampling statistics. Wiley, New York BookGoogle Scholar
- Gertner GZ (1984) The sensitivity of measurement error in stand volume estimations. Can J For Res 16:1120–1123 ArticleGoogle Scholar
- Gertner GZ, Köhl M (1995) An assessment of some nonsampling errors in a national survey using an error budget. For Sci 38:525–538 Google Scholar
- Goelz SJ, Burk TE (1996) Measurement error causes bias in site index equations. Can J For Res 26:1585–1593 ArticleGoogle Scholar
- Grafström A (2010) On unequal probability sampling designs. Ph.D. thesis, SLU, Umeå Google Scholar
- Graves HS (1906) Forest mensuration. Wiley, New York Google Scholar
- Gray A (2003a) Monitoring stand structure in mature coastal Douglas-fir forests: effect of plot size. For Ecol Manage 175:1–16 ArticleGoogle Scholar
- Gray A (2003b) Monitoring stand structure in mature costal Douglas-fir forests: effect of plot size. For Ecol Manag 175:1–16 ArticleGoogle Scholar
- Green EJ, Köhl M, Strawderman WE (1992) Improved estimates for cell values in a two way table Biometrie. u. Informatik. in Medizin. u. Biologie 23:24–30 Google Scholar
- Gregoire TG (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28:1429–1447 ArticleGoogle Scholar
- Gregoire TG, Scott CT (1990) Sampling at stand boundaries: a comparison of the statistical performance among eight methods. In: Burkhart HE, Bonnor GM, Lowe JJ (eds) Research in forest inventory, monitoring, growth and yield. School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University, Blacksburg, pp 78–85 Google Scholar
- Gregoire TG, Scott CT (2003) Altered selection probabilities caused by avoiding the edge in field surveys. JABES 8:36–47 ArticleGoogle Scholar
- Gregoire TG, Ståhl G, Naesset E, Gobakken T, Nelson R, Holm S (2011) Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Can J Forest Res 41:83–95 ArticleGoogle Scholar
- Grosenbaugh LR (1952) Plotless timber estimates – new, fast, easy. J For 50:32–37 Google Scholar
- Gurnaud A (1878) Cahier l’aménagement pour l’application de la méthode par contenance exposée sur la forêt des Eperous, 160 Google Scholar
- Halme M, Tomppo E (2001) Improving the accuracy of multisource forest inventory estimates by reducing plot location error – a multicriteria approach. Remote Sens Environ 78:321–327 ArticleGoogle Scholar
- Hartley HO (1966) Systematic sampling with unequal probability and without replacement. J Am Stat Assoc 71:739–748 ArticleGoogle Scholar
- Hess GR, Bay JM (1997) Generating confidence intervals for composition-based landscape indexes. Landsc Ecol 12:309–320 ArticleGoogle Scholar
- Hush B, Beers TW, Kershaw JA (2003) Forest mensuration. Wiley, New York Google Scholar
- Jenks GF (1967) The data model concept in statistical mapping. In: Frenzel K (ed) International yearbook of cartography. Rand McNally, Skokie Google Scholar
- Kangas A (1998) On the bias and variance in tree volume predictions due to model and measurement errors. Scand J For Res 11:281–290 ArticleGoogle Scholar
- Keen EA (1950) The relaskop. Emp For Rev 29:253–264 Google Scholar
- Keller M (2001) Aerial photography. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory; methods and models of the second assessment. WSL, Birmensdorf, pp 45–64 Google Scholar
- Köhl M (1994) Statistisches Design für das zweite Schweizerische Landesforstinventar: Ein Folgeinventurkonzept unter Verwendung von Luftbildern und terrestrischen Aufnahmen. In: Eidgenössischen Forschungsanstalt für Wald, S.u.L. (ed) Mitteilungen der WSL, Birmensdorf, p 141 Google Scholar
- Köhl M, Brassel P (2001) Zur Auswirkung der Hangneigungskorrektur auf Schätzwerte im Schweizerischen Landesforstinventar (LFI). Schweizerische Zeitschrift für Forstwesen 152:215–225 ArticleGoogle Scholar
- Köhl M, Kushwaha SPS (1994) A four-phase sampling method for assessing standing volume using landsat-TM-data, aerial photography and field assessments. Commonw For Rev 73:35–42 Google Scholar
- Köhl M, Marchetti M (2014) In: Pancel L, Köhl M (eds) Objectives and planning of forest inventories, Tropical forestry handbook. Springer, Heidelberg ChapterGoogle Scholar
- Köhl M, Scott CT (1994) Zur Auswertung von Gruppenstichproben bei extensiven Forstinventuren. Allgemeine Forst- und Jagdzeitung 165:101–106 Google Scholar
- Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Berlin/Heidelberg BookGoogle Scholar
- Köhl M, Scott CT, Lister AJ, Demon I, Plugge D (2015) Avoiding treatment bias of REDD+ monitoring by sampling with partial replacement. Carbon Balance and Management Google Scholar
- Kuusela K (1979) Sampling of tree stock by angle gauge in proportion to tree characteristics. Commun Inst For Fenn 95(7):14 Google Scholar
- Laurans M, Hérault B, Vieilledent G, Vincent G (2014) Vertical stratification reduces competition for light in dense tropical forests. For Ecol Manage 329:79–88 ArticleGoogle Scholar
- Lesser VM, Kalsbeek WD (1999) Nonsampling errors in environmental surveys. JABES 4:473–488 ArticleGoogle Scholar
- Levy PS, Lemeshow S (2008) Sampling of populations: methods and applications. Wiley, New York BookGoogle Scholar
- Li HG, Schreuder HT (1985) Adjusting estimates in large two-way tables in surveys. For Sci 31:366–372 Google Scholar
- Little RJA (2004) To model or not to model? Competing modes of inference for finite population sampling. J Am Stat Assoc 99:546–556 ArticleGoogle Scholar
- Lloyd CJ (1999) Analysis of categorical variables. Wiley, New York Google Scholar
- Loetsch F (1957) Report to the government of Thailand on inventory methods for tropical forests. FAO report. FAO, Rome Google Scholar
- Loetsch F, Zöhrer F, Haller KE (1973) Forest inventory. BLV Verlagsanstalt, München/Bern/Wien Google Scholar
- Lombardi F, Marchetti M, Corona P, Merlini P, Chirici G, Tognetti R, Burrascano S, Alivernini A, Puletti N (2015) Quantifying the effect of sampling plot size on the estimation of structural indicators in old-growth forest stands. For Ecol Manage 346:89–97 ArticleGoogle Scholar
- Magnussen S (1988) Tree height tarifs and volume estimation errors in New Brunswick. North J Appl For 15:7–13 Google Scholar
- Magnussen S (2002) Fast pre-survey computation of the mean spatial autocorrelation in large plots composed of a regular array of secondary sampling units (SSUs) depend on the average within-plot autocorrelation. Math Modell Sci Comput 13:204–217 Google Scholar
- Magnussen S (2003) Stepwise estimators for three-phase sampling of categorical variables. J Appl Stat 30:461–475 ArticleGoogle Scholar
- Magnussen S (2015) Arguments for a model based inference? For Int J For Sci 88(3):317–316 Google Scholar
- Mandallaz D (2008) Sampling techniques for forest inventories. Chapman & Hall/CRC, Boca Raton Google Scholar
- Matern B (1980) Spatial variation. Springer, Berlin/Heidelberg/New York Google Scholar
- McRoberts RE, Westfall JA (2013) Effects of uncertainty in model predictions of individual tree volume on large area volume estimates. For Sci 60:34–43 Google Scholar
- McRoberts RE, Gobakken T, Næsset E (2012) Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications. Remote Sens Environ 125:157–166 ArticleGoogle Scholar
- McRoberts RE, Liknes GC, Domke GM (2014) Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation. For Ecol Manage 331:12–18 ArticleGoogle Scholar
- Mesavage C, Grosenbaugh LR (1956) Efficiency of several cruising designs on small tracts in North Arkansas. J For 54:569–576 Google Scholar
- O’Regan WG, Arvanitis LG (1966) Cost effectiveness in forest sampling. For Sci 12:406–414 Google Scholar
- Olsen A, Sedransk J, Edwards D, Gotway C, Ligget W, Rathburn S, Reckhow K, Young L (1999) Statistical issues for monitoring ecological and natural resources in the United States. Environ Monit Assess 54:1–45 ArticleGoogle Scholar
- Palace MW, Sullivan FB, Ducey MJ, Treuhaft RN, Herrick C, Shimbo JZ, Mota-E-Silva J (2015) Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data. Remote Sens Environ 161:1–11 ArticleGoogle Scholar
- Pandey D (2008) National forest inventory in India. Workshop on “Monitoring of reduction of emissions from forest degradation” Paris, COMIFAC. http://pfbc-cbfp.org/docs/redd-paris032008/13%20-%20Pandey%20National%20lForest%20Inventory-India.pdf
- Payandeh B, Ek AR (1986) Distance methods and density estimators. Can J For Res 16:918–924 ArticleGoogle Scholar
- Pelz D, Cunia T (1985) Forest inventories in Europe. Mitt Abt Forstl Biom, Freiburg, vol 3, p 85 Google Scholar
- Pollard JH (1971) On distance estimators of density in randomly distributed forests. Biometrics 27:991–1002 ArticleGoogle Scholar
- Pommerening A, Schmidt M (1998) Modifizierung des Stammabstandsverfahrens zur Verbesserung der Stammzahl- und Grundflächenschätzung. Forstarchiv 69:47–53 Google Scholar
- Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin/Heidelberg BookGoogle Scholar
- Prodan M (1965) Holzmesslehre. Sauerländers, Frankfurt Google Scholar
- Prodan M (1968) Punktstichprobe für die Forsteinrichtung. Forst- u Ho/zw 23:225–226 Google Scholar
- Puffenberger HE (1976) Forest inventories in the tropics: a consideration. J For 74:28–38 Google Scholar
- Ranneby B, Rovainen E (1995) On the determination of time intervals between remeasurements of permanent plots. For Ecol Manage 71:195–202 ArticleGoogle Scholar
- Rao CR (1988) Variance estimation in sample surveys. Elsevier, Amsterdam BookGoogle Scholar
- Rao JNK (2003) Small area estimation. Wiley, Hoboken BookGoogle Scholar
- Rice B, Weiskittel A, Wagner R (2014) Efficiency of alternative forest inventory methods in partially harvested stands. Eur J For Res 133:261–272 ArticleGoogle Scholar
- Roesch FA, Van Deusen PC (2013) Time as a dimension of the sample design in national-scale forest inventories. For Sci 59:610–622 Google Scholar
- Royall RM (2001) Model robust confidence intervals using maximum likelihood estimators. Int Stat Rev 54:221–226 ArticleGoogle Scholar
- Saarela S, Grafström A, Ståhl G, Kangas A, Holopainen M, Tuominen S, Nordkvist K, Hyyppä J (2015) Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information. Remote Sens Environ 158:431–440 ArticleGoogle Scholar
- Saborowski J (1990) Schätzung von Varianzen und Konfidenzintervallen aus mehrstufigen Stichproben am Beispiel von Wladschadensinventuren. In, Schriften aus der FOrstlichen Fakultät der Universität Göttingen und der niedersächsischen forstlichen Versuchsanstalt Göttingen Google Scholar
- Saborowski J, Smelko S (1998) Evaluation of inventories based on sample plots of variable size. Allg Forst- und Jagdz 169:71–75 Google Scholar
- Särndal C-E, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer, Heidelberg Google Scholar
- Schlund M, von Poncet F, Kuntz S, Schmullius C, Hoekman DH (2015) TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest. Remote Sens Environ 158:255–266 ArticleGoogle Scholar
- Schmid P (1969) Stichproben am Waldrand. In: Eidgen. Anstalt Forstl Versuchswes (ed) Bericht, pp 234–303 Google Scholar
- Schreuder HT, Banyard SG, Brink GE (1987) Comparison of three sampling methods in estimating stand parameters for a tropical forest. For Ecol Manage 21:119–127 ArticleGoogle Scholar
- Schreuder H, Gregoire TG, Wood GB (1992) Sampling methods for multiresource forest inventory. Wiley, New York Google Scholar
- Schreuder HT, Li J, Scott CT (1993) Estimation with different stratification at two occasions. For Sci 39:368–382 Google Scholar
- Schroeder TA, Healey SP, Moisen GG, Frescino TS, Cohen WB, Huang C, Kennedy RE, Yang Z (2014) Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data. Remote Sens Environ 154:61–73 ArticleGoogle Scholar
- Scott CT (1984) A new look at sampling with partial replacement. For Sci 30:157–166 Google Scholar
- Scott CT (1986) An evaluation of sampling with partial replacement. in: use of auxiliary information in natural resource inventories. Society of American Foresters (SAF), Blacksburg, pp 74–79 Google Scholar
- Scott CT (1998) Sampling methods for estimating change in forest resources. Ecol Appl 8:228–233 ArticleGoogle Scholar
- Scott CT, Köhl M (1994) Sampling with partial replacement and stratification. For Sci 40:30–46 Google Scholar
- Sherman M (1996) Variance estimation for statistics computed from spatial lattice data. J R Stat Soc Ser B 58:509–523 Google Scholar
- Sims DA, Gamon JA (2003) Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ 84:526–537 ArticleGoogle Scholar
- Snedecor GW, Cochran WG (1989) Statistical methods. 8th edn. Iowa State University Press, Iowa City Google Scholar
- Stehman SV (1992) Comparison of systematic and random sampling for estimating the accuracy of maps generated from remotely sensed data. Photogramm Eng Remote Sens Environ 58:1343–1350 Google Scholar
- Stevens D, Olsen A (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278 ArticleGoogle Scholar
- Stott CB, Ryan EJ (1939) A permanent sample technique adapted to commercial timber stands. J For 37:347–349 Google Scholar
- Stott CB, Semmes G (1962) Our changing inventory methods and the CFI system in North America. In: Proceedings of the 5th world forest congress, Seattle Google Scholar
- Strand L (1958) Sampling for volume along a line. Norske Skogsforsøksv, Ås Google Scholar
- Sukhatme PV, Sukhatme BV, Sukhatme S, Asok C (1984) Sampling theory of surveys with applications. Iowa State University Press, Ames Google Scholar
- Tardif G (1965) Some considerations concerning the establishment of optimum plot size in forest survey. For Chron 41:93–102 ArticleGoogle Scholar
- Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14 ArticlePubMedPubMed CentralGoogle Scholar
- Thompson SK (1992) Sampling. Wiley, New York, p 343 Google Scholar
- Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (2010) National forest inventories – pathways for common reporting. Springer, Heidelberg BookGoogle Scholar
- Tomppo EO, Heikkinen J, Henttonen HM, Ihalainen A, Katila M, Mäkelä H, Tuomainen T, Vainikainen N (2011) Designing and conducting a forest inventory – case: 9th National Forest Inventory of Finland. Springer, Dordrecht BookGoogle Scholar
- Uebelhör K (1988) Praktische Erfahrungen mit Winkelzählprobe und Breitbandrelaskop im tropischen Regenwald. Forstarchiv 59:47–52 Google Scholar
- Valbuena R, Mauro F, Rodriguez-Solano R, Manzanera JA (2010) Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Span J Agric Res 8:1047–1057 ArticleGoogle Scholar
- Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB, Wallingford Google Scholar
- Veloso de Freitas J (2009) Forest monitoring: the national forest inventory-Brazil. In: Brazilian Norwegian workshop on forest and marine monitoring (ed). http://www.dsr.inpe.br/Brazil_Norway_Workshop/JOBERTO_FREITAS_The_National_Forest_Service_Inventory_and_Monitoring_Program.pdf
- Walters DK, Burkhart HE, Reynolds MRJ, Gregoire TG (1991) A Kalman filter approach to localizing height-age equations. For Sci 37:1526–1537 Google Scholar
- Ware KD, Cunia T (1965) Continuous forest inventory, partial replacement of samples and multiple regression. For Sci 11:480–502 Google Scholar
- Weiskittel AR, Hann DW, Kershaw JA, Vanclay JK (2011) Forest growth and yield modeling. Wiley, Chichester BookGoogle Scholar
- Williams DL (1996) Adaptive optimization of renewable natural resources: solution algorithms and a computer program. Ecol Modell 93:101–111 ArticleGoogle Scholar
- Wolter MK (1985) Introduction to variance estimation. Springer, Berlin/Heidelberg/New York Google Scholar
- Wolter KM (2007) Introduction to variance estimation. Springer, New York Google Scholar
- Wulder FSE, Lavigne MB (1996) High spatial resolution optical image texture for improved estimation of forest stand leaf area index. Can J Remote Sens 24:441–449 ArticleGoogle Scholar
- Zar JH (2010) Biostatistical analysis. Prentice Hall, Upper Saddle River Google Scholar
- Zeide B (1980) Plot size optimization. For Sci 26:251–257 Google Scholar
- Zhu JJ, Matsuzaki T, Gonda Y (2003) Optical stratification porosity as a measure of vertical canopy structure in a Japanese coastal forest. For Ecol Manage 173:89–104 ArticleGoogle Scholar
- Zingg A (1988) Schweizerisches Landesforstinventar, Anleitung für die Erstaufnahme 1982–1986. In: Versuchswesen EAF (ed), Birmensdorf Google Scholar
Author information
Authors and Affiliations
- Center for Wood Sciences, Institute of World Forestry, University of Hamburg, Leuschnerstrasse 91, Hamburg, 21031, Germany Michael Köhl
- Natural Resources Canada, Victoria, Canada Steen Magnussen
- Michael Köhl